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Problem 1. Let T be a Möbius transformation with fixed points z1 and z2. If S is a Möbius
transformation show that S−1TS has fixed points S−1z1 and S−1z2.

Proof. T is not the identity map, hence S−1TS is also not the identity map. This means that
S−1TS has at most two fixed points. Now, S−1TS(S−1z1) = S−1T (z1) = S−1(z1). Therefore,
S−1(z1) is a fixed point of S−1TS. Similar calculations show that S−1z2 is also a fixed point
of S−1TS. Also S−1z1 6= S−1z2. So S−1TS has two fixed points, S−1z1 and S−1z2.

Problem 2. (a) Show that a Möbius transformation has 0 and ∞ as its only fixed points
iff it is a dilation.
(b) Show that a Möbius transformation has ∞ as its only fixed point iff it is a translation.

Proof. (a) Suppose S is a dilation. Then S(z) = az for some a 6= 0, 1. Then S in not
the identity and S(0) = 0 and S(∞) = ∞, and thus these are the only fixed points of S.
Conversely, suppose that 0 and ∞ are the only fixed points of a Möbius transformation
S(z) = az+b

cz+d
. Since S(0) = 0, b = 0. Since S(∞) =∞, c = 0. So, S(z) = (ad−1)z and S is not

the identity, and hence it is a dilation.
(b) Suppose S is a translation. Then S(z) = z + a for some a 6= 0. Clearly S has no
fixed points in C and S(∞) = ∞. Conversely, suppose that ∞ is the only fixed point of a
Möbius transformation S(z) = az+b

cz+d
. Since S(∞) =∞, c = 0. Now suppose that a 6= d. Then

S( b
d−a) = b

d−a , which contradicts the fact that ∞ is the only fixed point of S. So a = d and
S(z) = z + bd−1 and S is not the identity, and hence it is a translation.

Problem 3. Show that a Möbius transformation T satisfies T (0) = ∞ and T (∞) = 0 iff
T (z) = az−1 for some a ∈ C.

Proof. Suppose T (z) = az−1 for some a ∈ C \ {0}. Then T (0) = ∞ and T (∞) = 0.
Conversely, suppose that T (0) =∞ and T (∞) = 0 and T (z) = az+b

cz+d
. Since T (0) =∞, d = 0.

Since T (∞) = 0, a = 0. So, T (z) = (bc−1)z−1.

Problem 4. Prove the following analogue of Leibniz’s rule. Let G be an open set and let
γ be a rectifiable curve in G. Suppose that φ : {γ} × G → C is a continuous function and
define g : G→ C by

g(z) =

∫
γ

φ(w, z)dw
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then g is continuous. If ∂φ
∂z

exists for each (w, z) in {γ} × G and is continuous then g is
analytic and

g′(z) =

∫
γ

∂φ

∂z
(w, z)dw.

Proof. Let z ∈ G. Since continuity is a local property, we can just work in a small open
ball around z. Choose a closed ball V around z contained in this open ball. Then V is
compact. Since a finite product of compact sets is compact, {γ} × V is compact, hence
φ|V : {γ} × V → C is uniformly continuous. So, given ε > 0, there exists δ > 0 such that
|φ(w1, z1)− φ(w2, z2)| < ε whenever |w1 − w2| < δ and |z1 − z2| < δ with (w1, z1), (w2, z2) ∈
{γ} × V. Now, let h be small such that z + h ∈ V and |h| < δ. We can do this because any
closed ball contains an open ball. Then

|g(z + h)− g(z)| =
∣∣∣∣ ∫

γ

φ(w, z + h)− φ(w, z)dw

∣∣∣∣ < εV (γ)

where V (γ) denotes the total variation of γ, which is a finite number as γ is rectifiable. This
shows that g is continuous at z. Since z is arbitrary and G is open, this shows that g is
continuous everywhere.
Now suppose that ∂φ

∂z
exists for each (w, z) in {γ} × G and is continuous. Then ∂φ

∂z
|V :

{γ} × V → C is uniformly continuous. Let us denote by φ1 the function ∂φ
∂z
|V . Given ε > 0,

there exists δ > 0 such that |φ1(w1, z1) − φ1(w2, z2)| < ε whenever |w1 − w2| < δ and
|z1−z2| < δ with (w1, z1), (w2, z2) ∈ {γ}×V. Let h be small such that z+h ∈ V and |h| < δ.
Then ∣∣∣∣ ∫ 1

0

φ1(w, z + th)− φ1(w, z)dt

∣∣∣∣ ≤ ∫ 1

0

|φ1(w, z + th)− φ1(w, z)|dt < ε

for any w ∈ {γ}. Note that d
dt

(φ(w,z+th)
h

)
= φ1(w, z + th). So∫ 1

0

φ1(w, z + th)− φ1(w, z)dt =
φ(w, z + h)− φ(w, z)

h
− φ1(w, z).

Therefore, ∣∣∣∣φ(w, z + h)− φ(w, z)

h
− φ1(w, z)

∣∣∣∣ < ε

for all w ∈ {γ} and |h| < δ with z + h ∈ V. Now,∣∣∣∣g(z + h)− g(z)

h
−
∫
γ

∂φ

∂z
(w, z)dw

∣∣∣∣ =

∣∣∣∣ ∫
γ

φ(w, z + h)− φ(w, z)

h
− ∂φ

∂z
(w, z)dw

∣∣∣∣ < εV (γ)

So g is differentiable at z with

g′(z) =

∫
γ

∂φ

∂z
(w, z)dw.

Since ∂φ
∂z

is continuous, g′ should also be continuous by the first part of this question. So, g
is analytic.
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Problem 5. Suppose that γ is a rectifiable curve in C and φ is defined and continuous on
{γ}. Use the above exercise to show that

g(z) =

∫
γ

φ(w)

w − z
dw

is analytic on C \ {γ} and

g(n)(z) = n!

∫
γ

φ(w)

(w − z)n+1
dw.

Proof. Let G = C \ {γ}. G is open in C. Let f : {γ} × G → C denote the function defined

by f(w, z) = φ(w)
w−z . f is continuous as φ is continuous. Then by Problem 4, g is analytic on

G = C \ {γ} and

g′(z) =

∫
γ

φ(w)

(w − z)2
dw.

Now repeating the argument for f1 = φ(w)
(w−z)2 defined on {γ} ×G, we get

g′′(z) = 2

∫
γ

φ(w)

(w − z)3
dw.

Repeating the argument n times gives us

g(n)(z) = n!

∫
γ

φ(w)

(w − z)n+1
dw.
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