Solutions: Homework 5

Nandagopal Ramachandran

November 15, 2019

Problem 1. Let T be a Möbius transformation with fixed points z_{1} and z_{2}. If S is a Möbius transformation show that $S^{-1} T S$ has fixed points $S^{-1} z_{1}$ and $S^{-1} z_{2}$.

Proof. T is not the identity map, hence $S^{-1} T S$ is also not the identity map. This means that $S^{-1} T S$ has at most two fixed points. Now, $S^{-1} T S\left(S^{-1} z_{1}\right)=S^{-1} T\left(z_{1}\right)=S^{-1}\left(z_{1}\right)$. Therefore, $S^{-1}\left(z_{1}\right)$ is a fixed point of $S^{-1} T S$. Similar calculations show that $S^{-1} z_{2}$ is also a fixed point of $S^{-1} T S$. Also $S^{-1} z_{1} \neq S^{-1} z_{2}$. So $S^{-1} T S$ has two fixed points, $S^{-1} z_{1}$ and $S^{-1} z_{2}$.

Problem 2. (a) Show that a Möbius transformation has 0 and ∞ as its only fixed points iff it is a dilation.
(b) Show that a Möbius transformation has ∞ as its only fixed point iff it is a translation.

Proof. (a) Suppose S is a dilation. Then $S(z)=a z$ for some $a \neq 0,1$. Then S in not the identity and $S(0)=0$ and $S(\infty)=\infty$, and thus these are the only fixed points of S. Conversely, suppose that 0 and ∞ are the only fixed points of a Möbius transformation $S(z)=\frac{a z+b}{c z+d}$. Since $S(0)=0, b=0$. Since $S(\infty)=\infty, c=0$. So, $S(z)=\left(a d^{-1}\right) z$ and S is not the identity, and hence it is a dilation.
(b) Suppose S is a translation. Then $S(z)=z+a$ for some $a \neq 0$. Clearly S has no fixed points in \mathbb{C} and $S(\infty)=\infty$. Conversely, suppose that ∞ is the only fixed point of a Möbius transformation $S(z)=\frac{a z+b}{c z+d}$. Since $S(\infty)=\infty, c=0$. Now suppose that $a \neq d$. Then $S\left(\frac{b}{d-a}\right)=\frac{b}{d-a}$, which contradicts the fact that ∞ is the only fixed point of S. So $a=d$ and $S(z)=z+b d^{-1}$ and S is not the identity, and hence it is a translation.

Problem 3. Show that a Möbius transformation T satisfies $T(0)=\infty$ and $T(\infty)=0$ iff $T(z)=a z^{-1}$ for some $a \in \mathbb{C}$.

Proof. Suppose $T(z)=a z^{-1}$ for some $a \in \mathbb{C} \backslash\{0\}$. Then $T(0)=\infty$ and $T(\infty)=0$. Conversely, suppose that $T(0)=\infty$ and $T(\infty)=0$ and $T(z)=\frac{a z+b}{c z+d}$. Since $T(0)=\infty, d=0$. Since $T(\infty)=0, a=0$. So, $T(z)=\left(b c^{-1}\right) z^{-1}$.

Problem 4. Prove the following analogue of Leibniz's rule. Let G be an open set and let γ be a rectifiable curve in G. Suppose that $\phi:\{\gamma\} \times G \rightarrow \mathbb{C}$ is a continuous function and define $g: G \rightarrow \mathbb{C}$ by

$$
g(z)=\int_{\gamma} \phi(w, z) d w
$$

then g is continuous. If $\frac{\partial \phi}{\partial z}$ exists for each (w, z) in $\{\gamma\} \times G$ and is continuous then g is analytic and

$$
g^{\prime}(z)=\int_{\gamma} \frac{\partial \phi}{\partial z}(w, z) d w
$$

Proof. Let $z \in G$. Since continuity is a local property, we can just work in a small open ball around z. Choose a closed ball V around z contained in this open ball. Then V is compact. Since a finite product of compact sets is compact, $\{\gamma\} \times V$ is compact, hence $\left.\phi\right|_{V}:\{\gamma\} \times V \rightarrow \mathbb{C}$ is uniformly continuous. So, given $\epsilon>0$, there exists $\delta>0$ such that $\left|\phi\left(w_{1}, z_{1}\right)-\phi\left(w_{2}, z_{2}\right)\right|<\epsilon$ whenever $\left|w_{1}-w_{2}\right|<\delta$ and $\left|z_{1}-z_{2}\right|<\delta$ with $\left(w_{1}, z_{1}\right),\left(w_{2}, z_{2}\right) \in$ $\{\gamma\} \times V$. Now, let h be small such that $z+h \in V$ and $|h|<\delta$. We can do this because any closed ball contains an open ball. Then

$$
|g(z+h)-g(z)|=\left|\int_{\gamma} \phi(w, z+h)-\phi(w, z) d w\right|<\epsilon V(\gamma)
$$

where $V(\gamma)$ denotes the total variation of γ, which is a finite number as γ is rectifiable. This shows that g is continuous at z. Since z is arbitrary and G is open, this shows that g is continuous everywhere.
Now suppose that $\frac{\partial \phi}{\partial z}$ exists for each (w, z) in $\{\gamma\} \times G$ and is continuous. Then $\left.\frac{\partial \phi}{\partial z}\right|_{V}$: $\{\gamma\} \times V \rightarrow \mathbb{C}$ is uniformly continuous. Let us denote by ϕ_{1} the function $\left.\frac{\partial \phi}{\partial z}\right|_{V}$. Given $\epsilon>0$, there exists $\delta>0$ such that $\left|\phi_{1}\left(w_{1}, z_{1}\right)-\phi_{1}\left(w_{2}, z_{2}\right)\right|<\epsilon$ whenever $\left|w_{1}-w_{2}\right|<\delta$ and $\left|z_{1}-z_{2}\right|<\delta$ with $\left(w_{1}, z_{1}\right),\left(w_{2}, z_{2}\right) \in\{\gamma\} \times V$. Let h be small such that $z+h \in V$ and $|h|<\delta$. Then

$$
\left|\int_{0}^{1} \phi_{1}(w, z+t h)-\phi_{1}(w, z) d t\right| \leq \int_{0}^{1}\left|\phi_{1}(w, z+t h)-\phi_{1}(w, z)\right| d t<\epsilon
$$

for any $w \in\{\gamma\}$. Note that $\frac{d}{d t}\left(\frac{\phi(w, z+t h)}{h}\right)=\phi_{1}(w, z+t h)$. So

$$
\int_{0}^{1} \phi_{1}(w, z+t h)-\phi_{1}(w, z) d t=\frac{\phi(w, z+h)-\phi(w, z)}{h}-\phi_{1}(w, z)
$$

Therefore,

$$
\left|\frac{\phi(w, z+h)-\phi(w, z)}{h}-\phi_{1}(w, z)\right|<\epsilon
$$

for all $w \in\{\gamma\}$ and $|h|<\delta$ with $z+h \in V$. Now,

$$
\left|\frac{g(z+h)-g(z)}{h}-\int_{\gamma} \frac{\partial \phi}{\partial z}(w, z) d w\right|=\left|\int_{\gamma} \frac{\phi(w, z+h)-\phi(w, z)}{h}-\frac{\partial \phi}{\partial z}(w, z) d w\right|<\epsilon V(\gamma)
$$

So g is differentiable at z with

$$
g^{\prime}(z)=\int_{\gamma} \frac{\partial \phi}{\partial z}(w, z) d w
$$

Since $\frac{\partial \phi}{\partial z}$ is continuous, g^{\prime} should also be continuous by the first part of this question. So, g is analytic.

Problem 5. Suppose that γ is a rectifiable curve in \mathbb{C} and ϕ is defined and continuous on $\{\gamma\}$. Use the above exercise to show that

$$
g(z)=\int_{\gamma} \frac{\phi(w)}{w-z} d w
$$

is analytic on $\mathbb{C} \backslash\{\gamma\}$ and

$$
g^{(n)}(z)=n!\int_{\gamma} \frac{\phi(w)}{(w-z)^{n+1}} d w .
$$

Proof. Let $G=\mathbb{C} \backslash\{\gamma\}$. G is open in \mathbb{C}. Let $f:\{\gamma\} \times G \rightarrow \mathbb{C}$ denote the function defined by $f(w, z)=\frac{\phi(w)}{w-z}$. f is continuous as ϕ is continuous. Then by Problem $4, g$ is analytic on $G=\mathbb{C} \backslash\{\gamma\}$ and

$$
g^{\prime}(z)=\int_{\gamma} \frac{\phi(w)}{(w-z)^{2}} d w
$$

Now repeating the argument for $f_{1}=\frac{\phi(w)}{(w-z)^{2}}$ defined on $\{\gamma\} \times G$, we get

$$
g^{\prime \prime}(z)=2 \int_{\gamma} \frac{\phi(w)}{(w-z)^{3}} d w
$$

Repeating the argument n times gives us

$$
g^{(n)}(z)=n!\int_{\gamma} \frac{\phi(w)}{(w-z)^{n+1}} d w .
$$

